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Motivation 

  For many probabilistic models, exact inference is 
intractable. 

  In such cases, approximate solutions can often be 
obtained by sampling. 

  We will focus on estimating expectations of 
functions of the hidden variables z, i.e., 

   E[f ] = f (z)p(z)dz∫
p(z) f(z)

z
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Goal 

  Basic idea: 
   E[f ] = f (z)p(z)dz∫

  
f̂ =

1
L

f z l( )( )
l=1

L

∑

   Draw L independent samples z l( )  from the distribution p(z).

  Then E[f ] can be approximated by:
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Goal 

  You can verify that: 

  and 

  Thus the accuracy does not depend upon the 
dimensionality of z! 

  
E f̂⎡⎣ ⎤⎦ = E f⎡⎣ ⎤⎦

  
var f̂⎡⎣ ⎤⎦ =

1
L

E f − E f⎡⎣ ⎤⎦( )2⎡
⎣⎢

⎤
⎦⎥



Probability & Bayesian Inference 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

5 

Sampling methods 

  Directed graphical models 
 Can use ancestral sampling. 

  Markov random fields 
 No one-pass method. 
   Can use Gibbs sampling. 
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Outline 

  Basic sampling algorithms 
  Markov Chain Monte Carlo (MCMC) 
  Gibbs Sampling 
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ALGORITHMS 



Standard Distributions 
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Standard distributions 

  Suppose that we have a good method for 
generating (pseudo-)random uniformly distributed 
numbers z over [0, 1]. 
 e.g., MATLAB’s unifrnd(). 

  Suppose that we wish to generate samples from a 
standard distribution p(y). 

  We would like to find a deterministic function f(z) 
that will transform each sample z to a sample y such 
that y is distributed according to p(y). 
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Standard distributions 

  Recall that: 

  
p(y) = p(z) dz

dy

   Then z =  f −1(y)  h(y) will be an increasing function of y.

  

Without loss of generality, we choose 
y = f (z) to be an increasing function of z.

  
Thus dz = p(y)dy → z = h(y) = p ŷ( )dŷ

−∞

y

∫
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Standard distributions 

  Thus to sample from p(y), we generate random 
uniformly distributed numbers z, then transform them 
according to 

  

y = h−1(z),

where h(y) = p ŷ( )dŷ
−∞

y

∫
p(y)

h(y)

y0

1
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Generalization to multivariate distributions 

   
p y1,…yM( ) = p z1,…zM( ) ∂ z1,…zM( )

∂ y1,…yM( )

   
where 

∂ z1,…zM( )
∂ y1,…yM( )  is the Jacobian of h.
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Example 1 

  The exponential distribution 

  
p(y) = λ exp −λy( ), y ≥ 0
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Example 2 

  The Cauchy distribution 

  
p(y) = 1

π
1

1+ y 2
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Example 3 

  Box-Muller method for generating i.i.d. Gaussian 
samples 

−1
−1

1

1z1

z2

  1. Generate samples from two i.i.d. uniformly-distributed rv's z1,z2 ∈[−1,1]

 2. Reject samples lying outside unit circle.

  

3. Now transform to samples y1,y2  according to:

y1 = z1

2log r 2

r 2

⎛

⎝⎜
⎞

⎠⎟

1/2

y2 = z2

2log r 2

r 2

⎛

⎝⎜
⎞

⎠⎟

1/2

  It can be shown that y1,y2  are i.i.d. standard normal variables (0-mean, unit variance).

  

To generate i.i.d. Gaussian rv's with mean µ  and std deviation σ, 
transform according to σy + µ.
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Example 4 

  Multivariate normal distributions 

   Use Cholesky decomposition Σ = LLt

   

Then if z is a standard normal random vector, 
y = µ + Lz will generate samples from N y;µ,Σ( ).
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Limitations of the standard method 

  Often the integration of p(y) and/or inverse to 
generate h(z) is not tractable. 
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Assignment 2 Competition Results 
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Rejection Sampling 
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Motivation 

  Though it may be difficult to sample fairly from p(z) 
directly, it is often the case that p(z) can easily be 
evaluated for any given z (at least up to a 
normalizing constant Z). 

    
i.e., p(z) = 1

Zp

p(z),  where p(z) can readily be evaluated.
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Main Idea 

  Consider first the univariate case. 
  Suppose we have a simpler distribution q(z) from 

which we can readily draw fair samples. 
  Suppose further we can find a constant k such that: 

z0 z

u0

kq(z0) kq(z)

�p(z)

   kq(z) ≥ p(z).
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Algorithm 

z0 z

u0

kq(z0) kq(z)

�p(z)

  1.  Generate a sample z0  from q(z).

  
2.  Generate a number u0  from the uniform distribution on 0,kq z0( )⎡⎣ ⎤⎦ .

  
Note that (z0,u0) is uniformly distributed under the curve kq(z).( )

   
3. If u0 > p z0( ),  reject the sample, otherwise retain.

   
The retained pairs z0,u0( )  will have a uniform distribution under p(z).

  Thus the corresponding z values will be fair samples from p(z).
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Efficiency 

  The probability that a proposal is accepted is given 
by 

  Thus we want k to be as small as possible. 

z0 z

u0

kq(z0) kq(z)

�p(z)

   
p(accept) = p(z) / kq(z){ }q(z)dz∫ =

1
k
p(z)dz∫ .
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Example 

  Suppose we wish to sample from the gamma distribution: 

  We know we can sample from the Cauchy distribution.  We generalize 
slightly, and transform uniform random variables y according to 

  which yields 

  The minimum rejection rate is obtained by setting 
z

p(z)

0 10 20 30
0

0.05

0.1

0.15

  
Gam(z | a,b) = baza−1 exp(−bz)

Γ(a)

  z = b tan y + c

  
q(z) = k

1+ (z − c)2 / b2

  c = a −1,  b2 = 2a −1
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Limitations 

  Can be hard to find a good bound kq(z). 
  Acceptance rate declines exponentially with 

dimensionality 



Importance Sampling 
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Importance Sampling 

  Rather than trying to sample fairly from p(z), let’s just try to 
estimate the expectation E[f] directly. 

  Note that all samples can be retained. 

p(z) f(z)

z

q(z)
   E[f ] = f (z)p(z)dz∫

   

where the importance weights rl =
p z l( )( )
q z l( )( )  

correct the bias introduced by sampling the wrong distribution.

   
= f (z) p(z)

q(z)
q(z)dz∫

    


1
L

p z l( )( )
q z l( )( ) f z l( )( )

l=1

L

∑
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Importance Sampling 

  Suppose that p(z) and q(z) can only be evaluated up to a 
constant, 

  Then we have  

p(z) f(z)

z

q(z)

   E[f ] = f (z)p(z)dz∫

    

where rl =
p z l( )( )
q z l( )( ) .

    

i.e., we can sample from q(z), and can calculate p(z),

where p(z) = 1
Zp

p(z),  and q(z) = 1
Zq

q(z).

    
=

Zq

Zp

f (z)
p(z)
q(z)

q(z)dz∫

    


Zq

Zp

1
L

rlf z l( )( )
l=1

L

∑
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Importance Sampling 

  Furthermore, 

p(z) f(z)

z

q(z)

    

Zp

Zq

=
1

Zq

p(z)dz∫ =
p(z)
q(z)

q(z)dz∫ 
1
L

rl
l=1

L

∑

    

where wl =
rl

rm
m
∑

=
p z l( )( ) q z l( )( )
p z m( )( ) q z m( )( )

m
∑

.

    
Thus E[f ]  wlf z( l )( )

l=1

L

∑



Probability & Bayesian Inference 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

31 

Limitations 

  Requires a good proposal distribution q(z). 
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Likelihood Weighted Sampling 

  A form of importance sampling can be applied to 
directed graphical models when some of the nodes 
have been observed. 

  Let the evidence set e represent the subset of variables that have been observed.

 The algorithm is a modification of ancestral sampling in which:

   1. If z ∈e, set z to its observed value.

   

The resulting sample z is then assigned the weight

r(z) =
p z i | pai( )
p z i | pai( )zi ∉e

∏
p z i | pai( )

1zi ∈e
∏ = p z i | pai( )

zi ∈e
∏

   2. Otherwise, sample from p z i | pai( ).
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Extensions 

  Sampling-importance-resampling 
 Uses proposal distribution q(z) to generate sample z 

with distribution that approximates p(z). 
 Two-stage sampling process 
 Unlike rejection sampling, all samples are retained. 

  Monte Carlo EM 
   Approximate E-step by sampling 
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MARKOV CHAIN MONTE 
CARLO METHODS 
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Motivation 

  Rejection sampling and importance sampling do not 
scale well to high dimension. 

  MCMC can potentially do better in higher 
dimensions, by staying in higher probability regions 
of the variable space 
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Basic Idea 

   

Instead of sampling independently, each sample depends upon the 
previous sample through a conditional proposal distribution q z | z(τ )( ),
forming a Markov chain of samples z(1),z(2),…
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Example:  Metropolis Algorithm 

   

Requires symmetric proposal distribution:
q zA | zB( ) = q zB | zA( )

   

Sample is then accepted with probability

A z*,z(τ )( ) = min 1,
p z *( )
p z(τ )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Note that samples that increase the probability are always kept.

  If candidate sample accepted, then z(τ +1) ← z * .

  Otherwise, z(τ +1) ← z(τ ).

 This leads to multiple copies of higher probability samples.
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Metropolis Algorithm:  Properties 

   

If q zA | zB( ) > 0∀zA,zB

Then the distribution of z(τ ) → p(z) as τ → ∞.

  Note that the z(τ )  are not independent.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Example 
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GIBBS SAMPLING 
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Gibbs Sampling 

  Gibbs Sampling is a particularly simple form of 
MCMC algorithm. 

  It’s applicable to multivariate distributions for which 
the conditional distributions of the individual 
variables can be readily computed (e.g., MRFs). 

  Each step involves replacing the value of one 
variable by a value drawn from the distribution of 
that variable conditioned on the current values of 
the remaining variables. 
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Gibbs Sampling:  Algorithm 

  
1. Initialize z i

(0){ }
 2. Repeat until convergence

  a. Select a zi

   
b. Sample zi

τ +1( ) ∼ p zi | z(τ ) \ zi
(τ )( ) = p zi | ne zi

(τ )( )( )

   

As long as p zi | z(τ ) \ zi
(τ )( ) > 0∀z, i

Then the distribution of z(τ ) → p(z) as τ → ∞.


