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Motivation

For many probabilistic models, exact inference is
intfractable.

In such cases, approximate solutions can often be
obtained by sampling.

We will focus on estimating expectations of
functions of the hidden variables z, i.e.,

" (o
Elf= [f(2)p(2)dz )

/ 2z
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Goal

E[f]= | f(z)p(z)dz

Basic idea:

Draw L independent samples 2") from the distribution p(z).

Then E[f] can be approximated by:
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Goal

You can verify that:

E[f]=£[]

var[ )= E|(-E[f]) |

Thus the accuracy does not depend upon the
dimensionality of z!

YO RI<E ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

IIIIIIIII
IIIIIIIIII

J. Elder



Sampling methods

Directed graphical models
Can use ancestral sampling.
Markov random fields

No one-pass method.

Can use Gibbs sampling.
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Qutline

Basic sampling algorithms

Markov Chain Monte Carlo (MCMC)
Gibbs Sampling
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BASIC SAMPLING
ALGORITHMS




- Standard Distributions



Standard distributions

Suppose that we have a good method for
generating (pseudo-)random uniformly distributed
numbers z over [0, 1].

e.g., MATLAB’s unifrnd().

Suppose that we wish to generate samples from a
standard distribution p(y).

We would like to find a deterministic function f(z)
that will transform each sample z to a sample y such
that y is distributed according to p(y).
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Standard distributions

Recall that:

p(y)=p(z)

dz
dy
Without loss of generality, we choose

y =f(z) to be an increasing function of z.

Then z= f'(y) = h(y) will be an increasing function of y.

y
Thus dz = p(y)dy — z=h(y)= | p(y)dy
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Standard distributions

Thus to sample from p(y), we generate random
uniformly distributed numbers z, then transform them
according to

y =h7(2),
y N

where h(y) = J p(y

—00
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Generalization to multivariate distributions

- 8(21,...ZM)
)l 2 o
where 8(21"“2’” ) is the Jacobian of h.

8(y1,...yM)
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Example 1

-1 The exponential distribution

p(y)=Aexp(-1y), y=0
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Example 2
I T

11 The Cauchy distribution

1 1

/O(y)=;1+y2
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Example 3

Box-Muller method for generating i.i.d. Gaussian

samples

1. Generate samples from two i.i.d. uniformly-distributed rv's z,,z, e [-1,1]

2. Reject samples lying outside unit circle.

3. Now transform to samples y,,y, according to:

2logr? " 2logr? "
y1:z1[ 2 ) yzzzz[ 2 J

1

—1

1 21 1

It can be shown that y_,y, are i.i.d. standard normal variables (0-mean, unit variance).

To generate i.i.d. Gaussian rv's with mean y and std deviation o,

transform according to oy + u.

I v
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Example 4

Multivariate normal distributions
Use Cholesky decomposition X = L[

Then if z is a standard normal random vector,
y = 1+ Lz will generate samples from N(y;u,z).
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Limitations of the standard method

-1 Often the integration of p(y) and/or inverse to
generate h(z) is not tractable.
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Assignment 2 Competition Results

3NN PCA(30) Log
L1 Dist NN Reg

\ PCA(15)/SVM \ \ \
w/ Gauss k

0.29 —

SVM Weighted |
w/ Gauss k 5NN

0.28 —
Weighted
4NN

0.27 —
Fisher w/

0.26 — diag cov
0.25—

0.24 —

Error rate

0.23—
SVM
0.221— w/ Gauss k

SVM
w/ Gauss k

0.19
NN Adnan Anna Brian Calden Eduardo Junjie Ossama Paria Ravi Ron Xiwen

Student
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- Rejection Sampling



Motivation

Though it may be difficult to sample fairly from p(z)
directly, it is often the case that p(z) can easily be
evaluated for any given z (at least up to o
normalizing constant Z).

i.e., p(z)= Zi p(z), where p(z) can readily be evaluated.
p
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Main ldea

Consider first the univariate case.

Suppose we have a simpler distribution g(z) from
which we can readily draw fair samples.

Suppose further we can find a constant k such that:

ka(2)2 B(2). WR—O
p(2)
¢ U()
- o = -_-
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Algorithm

1. Generate a sample z, from q(z).

2. Generate a number u, from the uniform distribution on [O,kq(zo)].

(Note that (z,,u, ) is uniformly distributed under the curve kq(z).)

3. 1fu, > ;5(20), reject the sample, otherwise retain.

The retained pairs (zo,uo) will have a uniform distribution under p(z).

Thus the corresponding z values will be fair samples from p(z).

kq(z0) kq(z)

N

20 z
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Efficiency

The probability that a proposal is accepted is given
by

placcept) = [ {5(2)/ ka(2)} a(z)dz = [ p(2)dz

Thus we want k to be as small as possible.

kq(zo) kq(z)
N
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Example

Suppose we wish to sample from the gamma distribution:

b?z* ' exp(—bz)
I'(a)

Gam(z|a,b) =

We know we can sample from the Cauchy distribution. We generalize
slightly, and transform uniform random variables y according to

Zz=btany +c Ob
0.1}

which yields ()

K 005

Z)= '
9(2) 1+(z-c)* | b
0 . .

The minimum rejection rate is obtained by setting ° 10 20 30

c=a-1 b*=2a-1
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Limitations

Can be hard to find a good bound kq(z).

Acceptance rate declines exponentially with
dimensionality
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- Importance Sampling



Importance Sampling

Rather than trying to sample fairly from p(z), let’s just try to
estimate the expectation E[f] directly.

E[f]= ,. f(z)p(z)dz p(2) q(2) f(2)

p(z)

q(z)

157 m§< ) - :

q(z)dz

1=1

p(z(/))
where the importance weights r, =

correct the bias introduced by sampling the wrong distribution.

Note that all samples can be retained.
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Importance Sampling

1 Suppose that p(z) and q(z) can only be evaluated up to a
constant,

i.e., we can sample from q(z), and can calculate p(z),

where p(z) = Zi,é(z), and q(z) = Zi q(2).

p q

1 Then we have

E[f]= [ f(2)p(2) dz

_ “q p(z) E
N Zp Jf(Z) 4(z) q(z)dz ﬂ

Z . _Pi%
-3 %z ir(2") where f, =~ )
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Importance Sampling

1 Furthermore,
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Limitations

1 Requires a good proposal distribution g(z).
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Likelihood Weighted Sampling

A form of importance sampling can be applied to
directed graphical models when some of the nodes

have been observed.
Let the evidence set e represent the subset of variables that have been observed.
The algorithm is a modification of ancestral sampling in which:

1.If z e e, set z to its observed value.
2. Otherwise, sample from p(zi |pa,.).

The resulting sample z is then assigned the weight

@=Tl p(z, Ipa,)H p(z 1pa) 1

2eoP(z,108)50 1

(z,1pa;)

YORK

Bt oot ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder



Extensions

Sampling-importance-resampling
Uses proposal distribution g(z) to generate sample z
with distribution that approximates p(z).

Two-stage sampling process

Unlike rejection sampling, all samples are retained.

Monte Carlo EM
Approximate E-step by sampling
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MARKOV CHAIN MONTE
CARLO METHODS




Motivation

Rejection sampling and importance sampling do not
scale well to high dimension.

MCMC can potentially do better in higher
dimensions, by staying in higher probability regions
of the variable space
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Basic Idea

Instead of sampling independently, each sample depends upon the
previous sample through a conditional proposal distribution q(z | z(”),

forming a Markov chain of samples z"",z?,. ..

IVERSITE
NIVERSITY
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Example: Metropolis Algorithm

Requires symmetric proposal distribution:
q(zA |ZB):q(ZB |ZA)

Sample is then accepted with probability

A(z*,27)= min[m%]

Note that samples that increase the probability are always kept.

If candidate sample accepted, then z'"*" « z *.
Otherwise, 2" « z(.
This leads to multiple copies of higher probability samples.

XQRK ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception J. Elder

IIIIIIIIII




Metropolis Algorithm: Properties

If q(zA |zB) >0Vz,,z,
Then the distribution of 2" — p(z) as 7 — .

3

Note that the 2z’ are not independent.
25¢
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GIBBS SAMPLING




Gibbs Sampling

Gibbs Sampling is a particularly simple form of
MCMC algorithm.

It’s applicable to multivariate distributions for which
the conditional distributions of the individual
variables can be readily computed (e.g., MRFs).

Each step involves replacing the value of one
variable by a value drawn from the distribution of
that variable conditioned on the current values of
the remaining variables.
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Gibbs Sampling: Algorithm

1. Initialize {2
2. Repeat until convergence
a. Selecta z,

b. Sample zfm) ~ p(zl. |29\ zf”) = p(z,. | ne(zf”))
As long as p(zi | 2 \zf”) >0Vz,i

Then the distribution of ") — p(z) as 7 — co.
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